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Abstract—In recent years, genetic algorithms (GAs) have been
combined with artificial neural networks (ANNs) to increase
the search space for desired outputs. However, a research gap
remains in optimising the ANN before incorporating it into the
GA. In this study, the ANN was optimised through grid search,
using parameters such as learning rates, number of epochs, batch
sizes, number of neurons, activation functions, and optimisers.
Furthermore, the optimisation approach was designed to be
applied to the additive manufacturing process, where data is
collected on LPBF process parameters such as laser power,
scan speed and hatch distance. The results demonstrated that
this approach improved the performance of GA-ANN parameter
optimisation, including faster convergence and higher objective
function value.

Index Terms—Machine learning, Process optimisation, Neural
network, Genetic algorithm, Parameter optimisation

I. INTRODUCTION

Additive manufacturing, a technology that enables the
creation of complex 3D structures layer-by-layer, has seen
significant advancements in recent years. Laser Powder Bed
Fusion (LPBF) is a popular additive manufacturing process
that uses laser energy to fuse metal powder particles to
create functional metal parts selectively. To optimise the LPBF
process parameters such as laser power, scan speed, and hatch
distance, various optimisation techniques have been explored.
Genetic Algorithms (GAs) and Artificial Neural Networks
(ANNs) have gained significant attention due to their potential
to solve complex problems in engineering, finance, biology,
and other fields [1]. ANNs are computational models inspired
by the structure and function of the human brain [2], while
GAs are optimisation algorithms inspired by natural selection
and genetics [3].

ANNs are machine learning models inspired by the structure
and function of biological neurons. ANNs comprise layers of
interconnected nodes, or ”neurons.” The input layer receives
input data, which is then processed by one or more hidden
layers before the output layer generates a prediction or clas-
sification [4].

There is a large body of research on applying ANNs and
GAs to optimisation problems. This includes the use of ANNs

to approximate the fitness function of a GA and the use of
GAs to optimise the structure and weights of ANNs. In this
research, ANN was used to approximate the fitness function
of a developed GA.

Grid search is an effective method for optimising ANN
design by systematically trying different hyperparameter com-
binations to identify the best configuration. The performance
of the ANN architecture can be considerably enhanced be-
fore being fed into a GA, which will also profit from the
enhanced architecture [5], [6]. This method can enhance a
neural network’s performance while simultaneously reducing
its complexity and computational requirements [7].

Manufacturing process optimisation is critical for high-
quality products and increased efficiency. Genetic algorithms
(GAs) can be used to optimise a variety of production pro-
cesses, including additive manufacturing (AM) and friction
stir welding (FSW) [5]. GAs can handle complex objective
functions and search many process parameters for the best so-
lution. GAs can be used in additive manufacturing to improve
printing process parameters such as layer thickness and print
speed to generate high-quality prints. Similarly, GAs can be
utilised in FSW to optimise process parameters such as plunge
depth, tool rotational speed, welding speed and tool geometry
to generate high-quality welded joints. Overall, GAs are a
versatile and strong tool for optimising production processes,
and their use can lead to higher product quality, efficiency,
and cost-effectiveness [8].

Several studies have combined GAs and ANNs to optimise
various tasks, including feature selection, parameter optimisa-
tion, and network topology optimisation [9]. Nonetheless, most
of these studies focused on optimising the GA while assuming
that the ANN is already optimised. This assumption may not
hold in practice because the performance of the ANN depends
on its architecture and hyper-parameters, such as learning rate,
number of epochs, batch size, number of neurons, activation
function, and optimiser.

Recent studies have proposed optimising the ANN before
incorporating it into the GA to solve this problem; before
applying a GA for feature selection in a classification task,
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[10] optimised the hyper-parameters of an ANN using a grid
search technique. According to their findings, Random Search
and Grid Search are promising and effective optimisation
strategies for this task. Sometimes, the small population of
solutions used at the outset and the expensive goal functions
employed by these searches can result in slow convergence or
execution time. In this study, they propose using the Support
Vector Machine as a machine learning model and optimising it
with four distinct algorithms—the Ant Bee Colony Algorithm,
the GA, the Whale optimisation, and the Particle Swarm
Optimisation—to determine the computational cost of SVM
following hyper-tuning. The GA was found to have lower
temporal complexity than other algorithms in this study.

Other studies have proposed more sophisticated techniques
for optimising ANNs before their incorporation into GAs.
For instance, they [11] proposed a hybrid method combin-
ing differential evolution and backpropagation for optimising
ANNs before using a GA for feature selection. In terms of
the precision of feature selection, their findings demonstrated
that the hybrid strategy outperformed other methods. Simu-
lation results demonstrate that the GA-SVM hybrid achieves
comparable classification accuracy and consistency to other
well-established algorithms. The results validate the classifi-
cation accuracy improvements and demonstrate the classifier’s
potential for future data mining applications.

In addition to optimising ANNs before incorporating them
into GAs, other studies have investigated the use of GAs to op-
timise ANNs directly. [12] For instance, when comparing the
performance of the models, optimised ANNs reduced the mean
squared error (MSE) over testing sets by up to 90%, whereas
optimised SVM’s led to a reduction of up to 70%, with the
latter’s greatest advantage being computational efficiency and
consistency across the various GA runs. The GA converged in
minutes, which is more effective than trial-and-error methods.
This study demonstrates that more attention should be paid
to the effect of machine learning model architectures on the
accuracy of the models, as the computational cost of the GA is
more than justified by its high accuracy. In addition, research
has been conducted on enhancing the performance of GAs by
incorporating ANNs as fitness functions [13].

While previous studies have examined the combination of
ANNs and GAs, the specific aspect of optimising ANNs
before integrating them with gas is still a new research topic.
This study will bridge this gap by developing a grid search
strategy for pre-optimising ANNs before incorporating them
into GAs to solve optimisation challenges. We hypothesise
that by enhancing the initial configuration of the ANN, the
performance of the GA-optimised ANN can be improved,
resulting in more efficient and effective optimisation outcomes.

In this study, we propose a novel approach for parame-
ter optimisation of an Artificial Neural Network (ANN) by
combining grid search and genetic algorithm techniques. Our
approach aims to enhance the performance of the genetic
algorithm-optimised ANN by pre-optimising the ANN through
grid search. We optimise the ANN’s hyperparameters, such
as learning rates, number of epochs, batch sizes, number of

neurons, activation functions, and optimisers. This systematic
grid search allows us to identify the optimal combination of
hyperparameters to improve the ANN’s convergence speed and
objective function values.

To validate the effectiveness of our approach, we utilise
data from the Friction Stir Welding (FSW) process, as the
availability of data from the target additive manufacturing
process was limited. Despite the difference in process context,
our findings demonstrate the efficacy of the pre-optimisation
method in enhancing the performance of the genetic algorithm-
optimised ANN. We achieve faster convergence and higher
objective function values by incorporating grid search to fine-
tune the ANN before the genetic algorithm optimisation.

Our approach provides a valuable contribution to the field,
emphasising the importance of pre-optimisation in the ANN-
GA integration. By systematically exploring the hyperparam-
eter space and leveraging the power of genetic algorithms, we
establish a robust framework for parameter optimisation that
can be applied to various optimisation problems, including
additive manufacturing processes.

II. METHODOLOGY

A. Experimental approach
There were two optimisation approaches in this study: pro-

cess parameter optimisation with GA and ANN optimisation
with grid search.

In the process parameter optimisation, an ANN was trained
using the process data, and then a pre-trained ANN model was
used in the fitness function evaluation step. The flow chart of
the integration of an ANN and a GA can be seen in Figure 1.

The ANN optimisation approach was utilised using the grid
search method. In other words, it was optimised using grid
search before incorporating the ANN into the GA. Grid search
is a common technique in machine learning used to search
for the optimal combination of hyperparameters. In this study,
the hyperparameters selected for optimisation were learning
rate, number of epochs, batch size and activation function.
The range of values for each hyperparameter can be seen in
Table I.

TABLE I
RANGE OF HYPERPARAMETERS FOR GRID SEARCH OPTIMISATION OF THE

ANN

Parameters Search Space
Learning Rate 0.0001 0.001 0.01
Number of Epochs 50 100 150
Batch Size 32 64 128
Activation Function ReLU Sigmoid Tanh

The grid search algorithm exhaustively searched for the
optimal combination of hyperparameters within the specified
range. The performance of the ANN was evaluated on the
validation set for each combination of hyperparameters, and
the combination that achieved The mean squared error (MSE)
was selected as the optimal combination.

After the ANN was optimised, it was integrated into the
GA for further optimisation. The GA used a binary string
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Fig. 1. This figure illustrates the methodology employed in this study for parameter optimisation. The flowchart showcases two main components: the grid
search of the Artificial Neural Network (ANN) and the genetic algorithm (GA) model. The grid search is performed to optimise the ANN’s hyperparameters,
while the GA incorporates a pre-trained ANN model in the fitness function calculation.

representation of the weights of the ANN as the chromosome.
The population size was set to 50, and the mutation rate was
set to 0.01. The fitness function used for the GA was the
accuracy of the ANN on the validation set. The GA was run
for 100 generations, and the best individual from the final
generation was selected as the solution.

All experiments were conducted on a machine with an Intel
Core i7-7700HQ processor and 16GB RAM. The software
used for implementation was Python 3.7 with the Keras
library for building and training the ANN and the GA. The
experiments were performed using TensorFlow.

The dataset used in the study was obtained from a friction
stir welding process, which contains 50 experiments with 8
input parameters and 5 output features [14].

B. Grid Search Procedure
The grid search systematically optimises this study’s Artifi-

cial Neural Network (ANN) hyperparameters. The procedure
consists of the following steps:

• Hyperparameters Considered: The grid search focuses
on essential hyperparameters, including alearning rate,
number of epochs, batch size, and activation function (see
Table I ).

• Defining the Search Space: Predefined ranges are estab-
lished for each hyperparameter based on prior knowledge
and literature review. The hyperparameters considered in
this study included the learning rate, number of epochs,
batch size, and activation function. We considered values
of 0.0001, 0.001, and 0.01 for the learning rate and 50,
100, and 150 for the number of epochs. The batch size
was explored with 32, 64, and 128 values. Additionally,
we considered three different activation functions: ReLu,
Sigmoid, and Tanh.

• Sampling the Search Space: A regular grid pattern is used
to systematically evaluate each hyperparameter combina-
tion within the defined search space.

• Performance Evaluation: The ANN’s performance is as-
sessed for each hyperparameter combination using the
mean absolute error (MAE) as the predefined objective
function. MAE captures the discrepancy between pre-
dicted and actual values, measuring prediction accuracy.

• Selection of Optimal Hyperparameters: The optimal set
of hyperparameters is determined based on the MAE
performance metric. The combination yielding the lowest
MAE is selected as the optimised set.

The grid search procedure allows for identifying the op-
timal hyperparameters for the ANN, resulting in improved
performance. The ANN can improve accuracy and predictive
capability by fine-tuning the hyperparameters.

C. ANN Modelling and Evaluation Criteria
Data from the friction stir welding process was used to train

a three-hidden-layer neural network with multiple inputs and
outputs (see Figure 2) [14]. The neural network was built with
eight input and five output neurons corresponding to input
parameters and output features. The dataset was pre-processed
using normalisation and feature scaling techniques to ensure
all input variables were on the same scale. This pre-processing
phase allows the neural network to converge faster during
training by preventing input features from disproportionately
affecting the network’s weights.

The neural network was trained using the backpropagation
algorithm, using mean squared error (MSE) as the loss func-
tion. MSE is a common loss function in regression problems
since it penalises larger errors more than smaller ones. The
dataset was divided into training and validation sets at random,
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Fig. 2. The architecture of the multiple inputs, multiple outputs ANN. This
study used eight input neurons, five output neurons and three hidden layers
in the ANN architecture.

with a 67/33 split. This division ensures that the model gets
trained on enough data while allowing for an independent
evaluation of the model’s performance.

The neural network architecture consisted of three fully
connected hidden layers, 160, 480 and 256 neurons in the
first, second and third hidden layers, respectively. The input
layer included 8 neurons, while the output layer had 5 neurons.
The neural network can learn complicated representations of
the input information due to the inclusion of three hidden
layers. In contrast, the variable number of neurons in each
layer allows the model to be more flexible in its ability to fit
the data. The output layer of the neural network was made up
of five neurons that were activated using the Sigmoid function.
The Sigmoid activation function is appropriate for regression
problems, as it scales the output between 0 and 1 and can
provide probability-like interpretations of the predictions.

The network was optimised using several hyperparameters
such as learning rate, epochs, batch size, and activation func-
tion in hidden layers. These hyperparameters were changed to
provide the best neural network performance as evaluated by
the MAE metric. The MAE metric measures the network’s
prediction accuracy by calculating the absolute difference
between predicted and actual values. The neural network may
generalise to new data and improve its prediction ability in
the process parameter optimisation approaches by optimising
these hyperparameters.

The Mean Absolute Error (MAE) was used as an evaluation
metric in this study to assess the performance of the Artificial
Neural Network (ANN) model in predicting the best process
parameters for friction stir welding. MAE was chosen above
other measures such as R-squared (R2), RMSE, accuracy,
recall, and F1-score because it provides a more intuitive
and easily interpretable measure of the difference between
predicted and actual values. In addition, the MAE is less
sensitive to outliers and extreme values in the data, which
is important in welding process parameters with a large range
of values.

The mathematical definition of MAE is as follows:

MAE = (
1

n
)

nX

k=1

|(yi � byi)| (1)

where yi represents the actual value of the experiment, byi

represents the predicted value, and n is the total number of
samples.

D. Genetic algorithm optimisation procedure
The genetic algorithm used a tournament selection approach

with a tournament size of three. The uniform crossover ap-
proach was employed for the crossover procedure, in which
each element of the offspring was randomly selected with
equal probability from the corresponding elements of the
two parents. The mutation operation modified the value of
a hyperparameter at random with a 0.1 chance.

The genetic algorithm’s ideal hyperparameters were used to
train a final ANN model. The resulting model’s performance
was evaluated on a separate test data set, and the findings were
compared to the original ANN model and other benchmark
models.

TABLE II
LIST OF SETTINGS AND PARAMETERS USED FOR GENETIC ALGORITHMS.

Parameter Value
Population size 50
Mutation probability 0.05
Crossover probability 0.7
Number of generations 100
Response to be maximised Fitness function

Overall, the optimisation approach implemented in this
work combines the advantages of grid search and evolutionary
algorithms to find the best process parameters.

III. RESULTS AND DISCUSSION

The optimised ANN was trained on the training set using
the hyperparameters selected by the grid search method. The
training process was run for the entire grid search parameters.
The optimised ANN was then integrated into the GA for
further optimisation.

Figure 3 demonstrates the effect of activation function,
learning rate, number of epochs, and batch size on MAE.
The results showed that the only considerable parameters were
the activation function and learning rate, which resulted in
changes in MAE. Furthermore, the ReLU function showed
the best performance with 0.45 MAE compared to the Sigmoid
function with 0.71 MAE. According to the findings, optimising
the learning rate parameter may result in lower MAE values
in this model by decreasing the MAE by 22%. Overall, the
results indicate that optimising ANN parameters of activation
function and learning rate can considerably impact model
performance, emphasising the necessity of selecting proper
parameters during model construction.

The grid search results revealed that the artificial neural
network (ANN) performance was highly dependent on the
choice of hyperparameters. The ANN model achieved the
highest performance among the tested combinations with a

659



Fig. 3. The figure showcases the influence of grid search parameters on
the Mean Absolute Error (MAE). The x-axis displays the hyperparameters:
Activation Function, Learning Rate, Number of Epochs, and Batch Size. Each
bar is divided into three sections representing different parameter values. The
MAE values highlight the impact of parameter configurations on the accuracy
of the ANN model.

0.001 learning rate, 100 epochs, 32 batch size, and ReLU
activation function. In contrast, the worst performing ANN
was found to have a learning rate of 0.01, 50 epochs, 32 batch
size, and Sigmoid activation function. To further investigate
the impact of the activation function on model performance,
we selected two ANN models with the same parameters except
for the activation function. The ANN model with ReLU acti-
vation achieved an MAE of 0.35, while the Sigmoid activation
model had a much higher MAE of 0.63. These results suggest
that the choice of activation function can significantly impact
ANN performance and should be carefully considered when
designing and training ANN models.

To evaluate the performance of the selected ANN models,
they were used to evaluate the fitness function of a genetic al-
gorithm (GA). The GA had a population size of 50, a mutation
probability of 0.05, and a crossover probability of 0.7, and it
was run for 100 generations. A dataset contained eight input
features, including plunge depth (PD), tool rotational speed
(RPM), welding speed (WS), tool geometry (TG), shoulder
diameter (SD), pin diameter (PnD), tool pin length (TPL),
and dwell time (DT), as well as five output features, including
ultimate tensile strength (UTS in MPa), yield strength (YS
in MPa), ductility (% EL.), bending angle (BA in degree),
and nugget zone hardness (HRD in HV). To evaluate the
effectiveness of the ANN model as a fitness function, we com-
pared two ANN models with identical parameters except for
the activation function. One model used the ReLU activation
function, while the other used the sigmoid activation function.
Both models had a 0.001 learning rate, 100 epochs, and 32
batch sizes.

The convergence rate of the two ANN models was also
assessed. A plot of the fitness function values over 100 gener-
ations revealed that the ANN model with the ReLU activation

function reached a fitness value of 94, but the model with
the sigmoid activation function got only an 85. This implies
that the ReLU activation function produced better optimisation
results. Furthermore, an evaluation of the convergence rate
revealed that the ANN model with the ReLU activation
function converged faster than the model with the sigmoid
activation function. This is seen in Figure 4, which shows
that the ReLU model has a steeper convergence rate than the
sigmoid model. These results emphasise the importance of
selecting an appropriate activation function when designing
and implementing ANN-based optimisation algorithms.

In summary, the proposed method was effective in improv-
ing the time to convergence and reaching to maximum fitness
value compared to using an optimised GA with a randomly
initialised ANN. The optimised ANN was able to reduce the
search space required by the GA and improve the convergence
speed. The results of this study provide insights for future work
in the field of metaheuristic optimisation and artificial neural
networks.

The proposed method in this study aimed to optimise the
ANN before integrating it into the GA for classification tasks.
The results of the experiments showed that the proposed
method was effective in improving the classification accuracy
compared to using a GA with a randomly initialised ANN.
One of the advantages of the proposed method is that it can
reduce the search space required by the GA. By optimising the
ANN before integrating it into the GA, the search space for the
GA is reduced, which can lead to faster convergence and better
performance. This can be particularly useful when dealing with
larger datasets or more complex classification tasks, including
facial recognition systems and big data in health science [15],
[16].

However, there are still some limitations to the proposed
method. The grid search method used in this study is a
brute-force approach that can be computationally expensive,
especially for larger datasets or more complex ANN archi-
tectures. Additionally, the proposed method only considers
limited hyperparameters for the ANN. There may be other hy-
perparameters or combinations of hyperparameters that could
lead to better performance. In future work, Model Predictive
Control (MPC) can be utilised to overcome these limitations
since MPC is the ability to get a fast response and feedback
control [17], [18].

IV. CONCLUSION

In conclusion, the findings of this study show that adjusting
an artificial neural network’s (ANN) activation function and
learning rate can considerably impact its performance. The
grid search strategy employed in this work successfully se-
lected the best hyperparameters for the ANN model, which
was then integrated into a genetic algorithm (GA) for further
optimisation. The results suggest that an optimised ANN can
improve convergence speed and achieve maximum fitness
values compared to using a GA with a randomly initialised
ANN.
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Fig. 4. This figure presents a comparison of the Genetic Algorithm-optimised Artificial Neural Network (GA-ANN) results using two different activation
functions: ReLu (on the right) and Sigmoid (on the left). The x-axis represents the number of generations, while the y-axis indicates the objective function value.
The graph on the right demonstrates significantly improved performance regarding both the objective function value and time to convergence, highlighting
the superiority of the GA-ANN with the ReLu activation function over the Sigmoid activation function.

The study results also demonstrated that the activation
function used significantly impacts ANN performance. The
ReLU activation function performed better than the sigmoid
activation function, leading to reduced MAE and higher op-
timisation results in the GA. However, it is important to
acknowledge the limitations of using grid search and GA
parameters. The predefined ranges may not encompass the
optimal values, and potential interactions between parameters
could not be explicitly investigated. Further exploration and
experimentation with alternative parameter configurations are
necessary to optimise the performance of the ANN and GA
comprehensively. Additionally, it is worth noting that the grid
search strategy employed in this work is computationally
expensive, highlighting the need for future research to address
this limitation.

Overall, the proposed method provides insight into future
research in metaheuristic optimisation and artificial neural
networks. Further research could look into using more effi-
cient hyperparameter optimisation methods or investigating
the effect of other hyperparameters on ANN performance.
Furthermore, the proposed method could be expanded to other
classification challenges or applied to regression tasks.
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