
Review Article
Digital Twin-Driven Machine Condition Monitoring: A
Literature Review

He Liu ,1 Min Xia ,2 Darren Williams,3 Jianzhong Sun,1 and Hongsheng Yan 1

1College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Department of Engineering, Lancaster University, Lancaster LA1 4YW, UK
3The Welding Institute, UK

Correspondence should be addressed to Min Xia; m.xia3@lancaster.ac.uk

Received 10 April 2022; Revised 14 June 2022; Accepted 9 July 2022; Published 30 July 2022

Academic Editor: Xueliang Xiao

Copyright © 2022 He Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Digital twin (DT), aiming to characterise behaviors of physical entities by leveraging the virtual replica in real time, is an emerging
technology and paradigm at the forefront of the Industry 4.0 revolution. The implementation of DT in predictive maintenance has
facilitated its growth. As a major component of predictive maintenance, condition monitoring (CM) has great potential to
combine with DT. To describe the state-of-the-art of DT-driven CM, this paper delivers a systematic review on the theoretical
and practical development of DT in advancing CM. The evolution of concepts, main research areas, applied domains, and
related key technologies are summarised. The driver of DT for CM is detailed in three aspects: data support, capability
enhancement, and maintenance mode shift. The implementation process of DT-driven CM is introduced from the
classification of DT modelling and the extension of monitoring algorithms. Finally, current challenges and opportunities for
future research are discussed especially concerning the barriers and gaps in data management, high-fidelity modelling, behavior
characterisation, framework standardisation, and uncertainty quantification.

1. Introduction

The fourth industrial revolution “Industry 4.0”demonstrates a
new modernisation and digitisation trend of industrial
machines driven by the advances of Internet of things (IoT),
advanced computing, and artificial intelligence (AI) [1]. The
industrial machines in this new trend are expected to be with
higher efficiency, longer lifetime, and lower operating costs.
Maintenance is crucial in achieving the requirements above.
Therefore, a transformation from preventive maintenance to
predictive maintenance is demanding in the era of Industry
4.0. Predictive maintenance can maximise machine in-service
time by monitoring the condition and predicting the optimal
schedule. Condition monitoring (CM) has played an increas-
ingly significant role in supporting predictive maintenance by
estimating the current and future condition of the monitored
machine. Data-driven CM has achieved remarkable progress
in the past decade with advances in sensors, information and
communication technologies, and data mining. However, the
pure data-driven approaches have faced fundamental chal-

lenges in providing interpretable, reliable, and practical solu-
tions due to the limitation of data availability, black-box
nature of machine learning, and diverse operational conditions.

With the development of smart sensors, digital modelling
technology, and data science, a new concept and paradigm
digital twin (DT) is developed, which mainly consists of phys-
ical space, virtual space, and the bidirectional connection. It
corresponds one-to-one with a potential observation of a par-
ticular physical entity. The virtual mirror is the representation
that implies capturing the real asset’s essential physical mani-
festation in a digital format, such as CAD or engineering
models with the associated metadata. DT can respond rapidly
to stimuli (forces, temperatures, etc.) and describe the operat-
ing context, such as wind or waves, in which the assets exist or
operate within. There has been continuous research towards
building digital twins. DT was originally developed for air
force vehicles by NASA and the US air force to enable the
safety and reliability of equipment [2]. Since then, DT has got-
ten much interest from academics and industry, and many
efforts have beenmade. Though the DT-related research is still
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in the infant stage, a lot of definitions of DT have been pro-
posed [3]. Current DT research mostly focuses on modelling
methods and prototype frameworks depending on the usage
scenario [1].

Due to the promising capabilities of DT, scientific
research and practical applications of DT in CM have
emerged in recent years. DT brings new solutions for CM
in predictive maintenance, while the architecture, workflow,
and related methods of DT-driven CM are not yet well
defined and established. Besides, to the best of our knowl-
edge, there are several papers [4–7] that reviewed the devel-
opment of DT or predictive maintenance, but the advances
of DT-driven CM have not been reported. A summary of
the recent advances in CM facilitated by DT is needed.
Therefore, this paper conducts a systematic review of the
development on DT-driven CM.

This paper is organised as follows: Section 2 illustrates the
background of CM and DT, providing the definitions, applica-
tions, and limitations; Section 3 describes the adoptedmethod-
ology andmaterials for the literature review. Section 4 contains
a descriptive and detailed analysis of the research results and a
discussion of the faced challenges and opportunities. Finally,
the conclusions of this study are provided in Section 5.

2. Background

This section aims to provide a brief overview of the principal
concepts and applications of CM and DT.

2.1. Condition Monitoring. With the evolution from preven-
tive maintenance to condition-based maintenance for
machinery, the origins and concepts of condition monitor-
ing have been defined as Table 1 shows. Conservatively, con-
dition monitoring is a process of observing parameters that
indicate the current status of the system [4]. It plays a signif-
icant role in the maintenance, management, and sustainable
operations of various sectors, such as manufacturing indus-
tries [8], electronics [9], and transportation [10]. The execu-
tion of condition monitoring in these industries enables
maintenance to be scheduled and actions to be taken to pre-
vent consequential damages. It would bring many benefits,
such as reducing machine downtime and costs and prolong-
ing the machine’s life.

The implementation of condition monitoring is spread in
various applications, such as performance assessment [14],
vibrationmodelling [15], thermalmonitoring [16], and oil anal-
ysis [17]. Each implementation would include three basic steps:
data acquisition, data processing, and decision-making process.
Various sensors (e.g., electrical, electronic, and mechanical)
have been installed inmachinery to acquire kinds of data. These
data then are processed to estimate the operating state of a
machine by numerous techniques. Upon processing the data,
the status information would be helpful for decision-making,
such as in determining/predicting (i) health condition, (ii)
remaining useful life, (iii) failure analysis, (iv) downtime reduc-
tion, and (v) performance improvement strategy.

The application of condition monitoring has increased the
reliability of machinery, while there are still some limitations.
Data unavailability or qualitative data makes it difficult to

assess the equipment status. Failures and performance deteri-
oration are not easy to trace and characterise without expertise
and numerous samples.

2.2. Digital Twin. To have an overview of the digital twin con-
cept, Table 2 provides some definitions in academic publica-
tions. The concepts are constantly being redefined, while most
of them include three main elements: physical space, virtual
space, and their connections of data and models. The features
of DT can be drawn from these concepts as individualised,
high-fidelity, real-time, and controllable [18]. By building an
accurate one-to-one mapping and feedback link between real
physical space and digital space, the digital twin can implement
real-time data/information exchange, dynamic modelling, and
update throughout its lifecycle.

The implementation of digital twins is based on several
key technologies: (i) data management, (ii) high-fidelity
modelling, and (iii) model-based simulation [18]. As the basis
of a digital twin, data goes through the steps of collecting, pro-
cessing, mapping, and calculating to drive DT. Both physical
modelling and data-driven methods are used and integrated
to characterise complex behavior of a physical object and
make predictions/reactions rapidly in DT. Simulations enable
a virtual model to predict the behaviors of physical entities in
real-time, provide measures to locate failure parts, predict
remaining life, and quantify uncertainties.

The research and practice of digital twin technology are
inseparable from targeted systems and application scenarios.
Numerous industries have been exploring its applicability,
such as unmanned aerial vehicles [23], gas turbines [24],
wind turbines [25], and manufacturing systems [26]. How-
ever, the connotation of the digital twin concept and techni-
cal framework has not yet formed a unified consensus in the
operation and maintenance phase of these machines. Some
bottleneck technologies, such as merging multidomain phys-
ical modelling and data-driven approaches, accurate map-
ping, and dynamic evolution of digital twins, are being
investigated for breaking through.

3. Research Methodology

3.1. Research Objectives/Questions. Considering the faced
challenges of CM and lots of opportunities arising from
DT, this paper aims to analyse the combination ways
between CM and DT, evaluating diverse views and benefits
from the combination. In this review, we are attempting to
answer the following research questions:

(i) Q1: why is digital twin technology suitable to facili-
tate machine condition monitoring?

(ii) Q2: how does digital twin technology drive machine
condition monitoring?

Overall, the motivation of this paper is to research how
condition monitoring is changing through digital twin tech-
nology, including reasons, measures, and gains. Meanwhile,
critical challenges and future trends will be involved.

2 Journal of Sensors



3.2. Research Sources and Methods. A systematic literature
review (SLR) is used to analyse and evaluate the existing status
of research derived from the given questions. This method is
different from the traditional review with advantages of avoid-
ing biased introduction and lack of critical analyses. Referring
to Zonta et al. [7] and Silvestri et al. [27], the implementation
of this method includes five stages: (1) formulation of the
research question, (2) collection of relevant literature in uni-
versal databases through specific keywords, (3) extraction of
eligible papers which meet qualified criteria, (4) design of a
database to assess and sort the extracted papers, and (5)
description of the results and findings.

After determining the research questions, several common
electronic databases are used to search related papers, includ-
ing Google Scholar (http://scholar.google.com), IEEE (http://
ieeexplore.ieee.org), Scopus (http://scopus.com), and Web of
Science (http://webofscience.com). Considering that condi-
tion monitoring has multiple similar designations, search
strings are derived from the research questions as follows:

(i) “Digital twin” AND (“real-time” OR “health” OR
“condition”) AND “monitoring”

(ii) “Digital twin” AND (“performance” OR “state”)
AND (“evaluation” OR “estimation”)

A high volume of papers that match the scope of keywords
were collected. Then, we selected the eligible papers by setting
exclusion criteria listed in Table 3. 2017 was chosen as the start
date of the search filter because DT in academia and industries
was still in infancy before 2017. Digital twin technologies are
applied across many areas, such as healthcare, smart cities,
and machinery, where the meanings of condition monitoring

are different [3]. As shown in criteria 2, the implementation
of both technologies in machines is the research object. Papers
from professional conferences and journals are considered
because of their concision and high quality.

We conducted a preliminary investigation on titles and
abstracts to evaluate relevance. For better classification and
analysis, the selected papers are categorised by article structure
(concept, review, case study, etc.), research methods (data-
driven, physical-based, hybrid, e.g.), research objects (gas tur-
bines, wind turbines, manufacturing systems, etc.), and
research purposes (health monitoring, structure damage
assessment, performance evaluation, etc.). Meanwhile, the full
text of selected articles was reviewed to extract features for
research questions.

4. Results and Findings

Investigating results and findings based on research ques-
tions are presented in this section.

4.1. Descriptive Analysis of Research Results. We have col-
lected 133 papers published from 2017 to 2022 in profes-
sional academic search databases. After removing
duplicates, the final database contains 95 papers suitable
for responding to the research objective. We chose one arti-
cle to read the full text for papers that studied the same type
of machines or used the same methods. Finally, 64 papers
were explored fully, and others were read simply as shown
in Table 4.

The article distribution by search databases and types is
shown in Figure 1. Google Scholar and Web of Science are
the main sources in this review. In the database, journal arti-
cles are obviously more than conference papers. According

Table 1: Definitions of condition monitoring.

Author Definitions of condition monitoring

Álvarez et al. (2013) [11]
“Assessing the current state and estimating the future state of a system by means of measurements and

calculations.”

Chaulya and Prasad (2016) [12]
A process of monitoring different parameters of condition in machinery in order to identify any

significant change, which is indicative of a developing fault.

Correa and Guzman (2020) [13] An evolution of predictive maintenance or proactive maintenance.

Ali and Abdelhadi (2022) [4]
A process of observing a set of parameters and/or variables that indicate the state of the system under

investigation.

Table 2: Definitions of digital twin.

Author Definition of digital twin

Glaessgen et al. (2012) [19]
An integrated multiphysics, multiscale, probabilistic simulation of a vehicle or system that uses the best

available physical models, sensor updates, fleet history, etc., to mirror the life of its flying twin.

Chen (2017) [20]
A computerised model of a physical device or system that represents all functional features and links with the

working elements.

Luo et al. (2019) [21]
A multidomain and ultrahigh fidelity digital model integrating different subjects such as mechanical,

electrical, hydraulic, and control subjects.

Madni et al. (2019) [22]
A virtual instance of a physical system (twin) that is continually updated with the latter’s performance,

maintenance, and health status data throughout the physical system’s life cycle.
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to statistics, the main journals and conferences that pre-
sented more than one occurrence were IEEE Access, Inter-
national Journal of Advanced Manufacturing Technology,
Robotics and Computer-Integrated Manufacturing, Journal
of Manufacturing Systems, ASME Turbo Expo, and IEEE
international conference.

Since 2015, the number of publications has generally
increased yearly, as shown in Figure 2. Most of the literature
is dominated by case studies (74.7%), which were divided
into three categories: (i) theoretical simulation (17.9%): the-
ories were proposed and compared by simulation; (ii) exper-
imentation (31.6%): methods and models were verified by
virtual-real interaction under ideal experimental conditions;
(iii) prototype (25.3%): methodology was proved with real
monitoring data or applied in in-service machines. The ris-
ing trend of papers with experimentation and prototype
means that the study of DT-driven CM is shifting from the-
ories to implementation. Meanwhile, this shifting situation
facilitated discussions about related technologies and chal-
lenges, which caused an increase in the review literature.

To demonstrate the applied area and cases of DT-driven
CM, we present some representative papers listed by date in
Table 5. Each paper’s research area, objects, and related param-
eters were extracted for analysis. Digital twins bring more con-
notations and extensions to condition monitoring, as shown in
the column of specific areas, such as structural load monitoring,

remote online cluster monitoring, and prediction of remaining
useful life (RUL). The experiments and applications have been
spread in numerous domains, including energy (steam turbines
and wind turbines), transportation (vehicle braking systems
and vessels), aeronautics (aircraft and aero-engines), astronau-
tics (satellites), manufacturing (lathes and 3D printers), and
electronic (converters and batteries). In these scenes, mostmon-
itoring variables are inaccessible, unpredictable, or changing
obviously with operating conditions, which are unable or diffi-
cult to monitor and estimate only by traditional sensors and
data processing technologies.

To find all terms directly related to the combination
between condition monitoring and digital twins, we generated
a relation map of keywords, occurrences of which are more
than twice, from the literature database and categorised them
into four groups, as presented in Figure 3 and Table 6. “Digital
twin” is the most frequently occurring word, which builds the
links among developing backgrounds and subjects, emerging
technologies and approaches, as well as innovations in imple-
mentations. Modern technologies (digital twin, cyber-physical
systems, Internet of things, etc.) enable traditional condition
monitoring to be incorporated with various novel methods,
i.e., artificial intelligence, cloud computing, and virtual sensing.

According to keyword analysis, DT-driven CM is pres-
ently used mostly in two fields: manufacturing processes (rep-
resented by smart manufacturing [62]) and operation and

Table 3: Quality evaluation criteria of papers.

Section Description

Criteria 1 Set the published period from 2017 to now.

Criteria 2 Limit research object as machinery or equipment.

Criteria 3 Remove technical reports, dissertations, and theses.

Criteria 4 Remove documents less than 6 pages long.

Table 4: Summary of the systematic literature review search process.

Identified articles Articles post removing duplicates Articles post abstract review Articles post full text review

Total 133 38 31 64
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Figure 1: Distribution of publications by search engines and type.
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maintenance processes (represented by predictive maintenance
[63]). Some studies take a modelling-oriented approach, digital
twin, based on technical engineering challenges, with the goal of
characterising precise physical behaviors. Others take an infor-
mation management-oriented approach, such as IoT, empha-
sising semantic relationships and seamless information flow.
Both approaches are derived from artificial intelligence, cloud
computing, and other methods, all of which are in the early
stages of development. The above advances provide possibilities
for the application of condition monitoring in multiple fields,
such as RUL prediction components, rapid failure diagnosis of
complex systems, and structural health monitoring.

4.2. Content Analysis of Digital Twin Driven Condition
Monitoring. This section presented the results and discus-
sions based on the previously elaborated questions.

4.2.1. Q1: Why Is DT Suitable to Facilitate Machine Condition
Monitoring? Currently, there are still obstacles to traditional
condition monitoring, including (i) data inaccessibility due
to harsh environments or insufficient sensing, (ii) lack of inter-
pretability and transparency due to the use of black-box
models, and (iii) weak ability to support prediction and com-
prehensive decision-making. DT-driven CM is a customised,
high-fidelity, real-time, controllable process to assess the cur-
rent status and simulate predictable scenarios. DT provides a
high-fidelity accurate model to characterise and predict the
state of a physical entity in virtual space. The physical entity
and virtual model links can provide real-time information
on machine performance and operating feedback [3]. The
real-time interaction lays the foundation for condition moni-
toring development. Therefore, DT-driven CM can overcome
the limitations of existing approaches and provide additional
benefits, such as the following:

(i) Availability of a multilevel, multidomain database

DT belongs to an integrated database, which stores holistic
and hierarchical data covering the whole life cycle. This data-

base is built with design-manufacturing-operating-mainte-
nance data and records from machine layer to part layer.
The new monitorable variables (stress, strain, etc.) are avail-
able for condition monitoring and make it possible to assess
RUL of new failure modes. Li et al. built a versatile probabilis-
tic model to realise the digital twin vision and predict the air-
craft wing fatigue crack growth [28]. Magargle et al. presented
a digital twin-driven approach to support heat monitoring and
accumulated wear prediction of an automotive braking system
[30]. Xie et al. proposed an attitude monitoring method for
hydraulic supports based on the digital twin theory [36].

Furthermore, a new concept, “virtual sensor,” has been
proposed by Nguyen et al. as a novel analytical solution for a
process variable that can be used in place of a sensor [59].
They used virtual sensors based on DT to construct perfor-
mance prediction models for a feedwater heater. Virtual sen-
sors driven by digital twin have also been applied in vertical
transportation systems [47] and dredgers [53] to monitor
guide alignment and defined residual warning values.

Condition monitoring and diagnostics have become
more practical as the type and volume of available data have
grown. However, multilevel database-related literature was
few proposed because the scale of digital twin research sub-
jects mainly focuses on small structures. Meanwhile, the
above-referred approaches for obtaining novel variables
mostly rely on numerical simulations or equilibrium equa-
tions, which inevitably exist errors and nonconvergence con-
ditions. The output of virtual sensors is affected by the
physical entity, environments, and usage history, which are
rarely considered in existing research.

(ii) Enhanced ability of fault tracing and degradation
prediction:

Condition monitoring based on data-driven methods with
monitoring data as input can trigger early warnings accurately
while identifying the root cause of faults is a challenge for such
approaches due to lacking connections with failure mechanism
and physical structure. Conversely, the virtual mirror of DT is
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Figure 2: Content type of DT-driven CM literature.
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an intergradation ofmultiphysics, multiscale, andmultidomain
models, which can characterise the dynamic behavior of the
physical entity. Therefore, components or systems that cause
failures are located directly by the output and inner interactions
of the virtual mirror. Tao et al. proposed a DT-driven PHM
method to identify and estimate gearbox failure, and the DT
model had much better performance in detecting the fault
cause (e.g., tooth wear, fatigue, and breakage) than the signal
diagnostic method [31]. The DT-based method proposed in
this paper covers physical entity, virtual equipment, service,
data, and connection, which is suitable for improving the accu-
racy of prognosis. However, balancing the costs and benefits of
the DT and processing a large amount of DT data would
impact the application. Zaccaria et al. built a framework for
monitoring, diagnostics, and health management of an aircraft
engine fleet based on a digital twin [32]. By this framework, dif-
ferent degrees of coupling failures were identified and isolated
accurately. However, this framework is far too simplistic to suit

the needs of digital twins as it is based solely on an engine per-
formance model and Monte Carlo simulations.

For machines with a long service lifetime, the impacts of
performance degradation and structural deterioration must
be considered when conducting condition monitoring. Dig-
ital twins can characterise these features not only from mon-
itoring data analytics but also from the perspective of part
deviations. Craft et al. built a multilevel digital twin of aero
engines. They characterised the degradation of whole engine
performance and key module characteristics with damaged
images of components, e.g., the erosion of high-pressure
compressor blades [64]. Dawes et al. proposed an automated
morph-mesh-solve workflow to update the geometry model
of high-pressure-turbine blades to predict the performance
of a gas turbine digital twin with consideration of the blade
corrosion [65]. Although these technologies have much
practical value, relevant data and samples are difficult to
obtain and gather for each DT physical entity.

VirVirtuatual sl sensensingingg

StaStatete estestimaimatiotionn

Remaining useful lifeRemaining useful l

Reliabilityy

Prognosis

Diagnosis

Anomaly dy detectionn

Monitoring

MaiMaintentenannancece

HeaHealthlth momonitnitorioringng

CybCyber-er phyphysicsical al syssystemtemss

ClClo dud com tputiing

Structural health monitoring

Artificial intelligence

IntInternet of f hithings

Condition monitoring

SmaS rt mannufau cturingg

SimSimulaulatiotionn

Predictive maintenance

Inddustustry ry 4.04.0

Deep learning
Machine learning

DigDigitaital tl twinwin

Figure 3: Mapping of keywords in related publications.

Table 6: Keyword classification.

Key terms

Backgrounds Industry 4.0, smart manufacturing, and predictive maintenance

Technologies Digital twin, cyber-physical systems, and Internet of things

Methods Artificial intelligence, machine/deep learning, cloud computing, virtual sensing, and simulation

Implementations Condition monitoring, anomaly detection, structural health monitoring, state estimation, and RUL prediction
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(iii) Requirements for maintenance mode revolution

Condition monitoring has already been applied in oper-
ation and maintenance of high-value assets. However, this
measure driven by solely monitoring data can only provide
reference information rather than final decisions for mainte-
nance plans in most cases because the trained model is not
reliable and interpretable enough to locate failure and pre-
dict serviceability. Thus, maintenance intervals are fixed for
most machines, leading to high costs and low utilisation.
Predictive maintenance is a method that produces updated
information allowing the prediction of future behavior to
maximise the part’s service life [13]. It aims to minimise
maintenance costs while ensuring the safety and reliability
of machines. Currently, the application of DT in predictive
maintenance is the most related topic both in academic
research and industry practice [18].

It is necessary to promote the combination between DT
and monitoring methods to achieve predictive maintenance.
Ding et al. proposed a predictive maintenance method for
shearer key parts to predive the RUL and support decision-
making based on high-fidelity modelling and hyperrealistic
behavior simulations, both of which are the key technologies
of digital twin modelling [66]. Moghadam and Nejad pro-
posed an innovative drivetrain RUL monitoring approach
based on digital twin modelling to perform predictive main-
tenance of the turbine main shaft [57]. Both papers only
explore predictive maintenance in a narrow sense, and
future research should include more failure models and deci-
sion considerations. Mi et al. proposed a cooperative aware-
ness and decision-making framework integrated with data,
knowledge, and DT to support fault diagnosis and mainte-
nance planning and an actual engineering case, prediction
maintenance decision-making for bearings in grinding rolls
of the large vertical mill, is analysed to illustrate the accuracy
and applicability of this framework [67]. In general, the
framework is broad and advanced, taking into account all
critical elements such as multilevel data, self-adaptive
models, uncertainties, and operating conditions.

4.3. Q2: How Does Digital Twin Drive Condition Monitoring?
DT is a physical-digital replica with high-fidelity and individua-
lised models, as well as a bidirectional and real-time data trans-
mission process. The advanced modelling methods enable the
digital model to characterise its entity’s operating conditions
and provide additional data on loads, damage, and faults. The
physical-to-digital connection means that the conditional data
of the physical entity is transmitted into the virtual environment
in real-time. Then, the digital model updates itself to match its
counterpart, and conditional data are utilised for fault diagnosis
and prognosis. The foundation of DT-driven CM is advanced

modelling methods. Then, new condition monitoring and fault
diagnosis algorithms have been developed based on DT’s
remarkable features. The progression of modelling and algo-
rithm development is summarised as follows:

(i) DT modelling to characterise machine behaviors

Numerous modelling methods have been developed to
make accurate and bidirectional mapping between the physical
entity and the virtual model. They can be divided into physical-
based, data-driven, and hybrid methods, as shown in Table 7.
Physical-basedmethods are applied to keep virtual models with
high fidelity, including principle-based modelling for mechan-
ical systems, numerical simulation for structure, and equivalent
modelling for electronic devices. Data-driven methods build
the specific link between machine operating conditions and
the variables of interest. Hybrid methods combined with
physical-informed and data-driven methods are commonly
employed to integrate physical or system principle knowledge.
Rapid response scan be generated by reducing the model
degree of freedom using hybrid methods. Models built by
hybrid methods have required features for standard DT, such
as high-fidelity, quick-update, and rapid-response abilities.

According to the literature investigation, most of the cur-
rent prototype studies are aimed at simple systems or struc-
tures. The physical-based modelling is qualified to support
digital twin modelling in this situation. Shangguan et al. pre-
sented a new physical-virtual convergence approach for a satel-
lite system by Modelica-based modelling [45]. Moi et al. built a
digital twin of a small-scale knuckle boom crane by finite ele-
ment modelling and verified the results by strain gauges [43].
Some studies use data-driven approaches to build data links
in digital twins. Li compared the accuracy of digital twin-
driven virtual sensors built by different models, such as long-
short term memory network, extreme gradient boosting, sup-
port vector regression, and deep belief network [55]. Stoumpos
and Theotokatos employ a neural networks data-driven
method into digital twin as virtual sensors of marine dual-
fuel engines [70]. Booyse et al. proposed a new form of DT,
deep digital twin [71]. It is constructed from deep generative
models which learn the distribution of healthy data directly
from operational data at the beginning of an asset’s life-cycle
[71]. However, the parameter mapping performed by the black
box model has yet to meet the requirements of DT-driven CM,
due to a lack of interpretability and physical knowledge.

Recently, hybrid approaches combining physical-based
and data-driven models have been investigated in academics
to reduce the computing and mapping time of a high-order
virtual model. Bonilla et al. used graph convolutional neural
network theory and a hydraulic modelling method to generate
a digital twin of the water system [61]. Magargle et al. built a

Table 7: Classification of modelling methods.

Methods type Methods

Physical-based Principle-based modelling [59]; finite element analysis [60]; computational fluid dynamics [68]; equivalent modelling [48]

Data-driven Machine learning [53]; neural network [61]; deep learning [69]

Hybrid Reduced-order modelling [30]; surrogate modelling [23]
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multilevel model for an automotive braking system with 3-D
finite element analysis, 0-D multidomain circuit simulation,
and reduced-order modelling [30]. Vasilyev et al. propose a
coupling modelling method that can be efficiently utilised to
estimate gas-turbine-engine blades’ residual life with thermal-
solid integrated analysis and ensemble machine learning [72].
Hybrid-method-based DT can swiftly calculate and predict
the outcomes of multilevel or complex machines. However,
the calculating errors derived from quick mapping as well as
the time and resource costs resulting from physical modelling
must be optimised in the application of hybrid methods.

(ii) Development of model-based diagnosis and prediction

Sensors set in machines are commonly limited, and the
available sensor data are often not rich to support the training
of robust data-driven condition monitoring algorithms [52].
With the increase of monitorable variables in DT, many diag-
nosis and prediction methods have been proposed, and the
area of monitoring has been broadened. In these methods,
performance evaluation is mainly carried out in the whole
machine layer; fault detection and health status assessment
are often conducted in the system or subsystem layer; RUL
prediction mainly focuses on the part and component layer.
The details are as follows:

(a) Performance evaluation

The in-service performance of machines, which deter-
mines the profitability of operators, is a critical factor trigger-
ing repair in predictive maintenance, especially for rotating
machinery. In previous studies, the performance degradation
trend is usually evaluated with the historical data by statistic
methods, which can only reflect the average level. As for
now, the individual performance condition can be traced
and assessed by digital twin, which considers the operating
environments and load usages of the specific machine. Unlike
the simple baseline fitting method, Panov and Cruz-Manzo
built a performance digital twin platform of gas turbines to
track performance degradation with the novel gas path com-
ponent capacity index [50]. A distributed control system net-
work was built in Panov’s work, but each module of
individual engines was based on a one-dimensional model,
which is not conducive to obtaining high-precision prediction
results. Johansen and Nejad proposed a fuel consumption
evaluation method in vessels through motion data generated
by the DT [35]. The results show that the lower fidelity model
was more accurate than the higher fidelity model. The higher
dimensionality and fidelity of virtual models indicate that
more data is needed as input and optimisation.

(b) Anomaly detection

The related variables of inaccessible locations and harsh
environments can be monitored based on the digital twin
modelling. Thus, the anomaly can be directly identified and
detected with these parameters. Balta et al. built a DT architec-
ture with appropriatemathematical modelling formalisms and
the deviation of defined variables shows the anomaly of the 3D

printer occurring in additive manufacturing processes [40].
Zaccaria et al. proposed an automated signature-based algo-
rithm for anomaly detection and fault isolation of aero-
engine components based on the gas flow parameters gener-
ated by a digital twin platform [32]. High-value assets with
complex structures would benefit from the anomaly detection
supported by DT, which could monitor related parameters
from hard-to-assess locations.

(c) Health monitoring

Health monitoring is a critical part of predictive mainte-
nance in complex systems. The health status indicates
whether the equipment meets the operating conditions.
The real-time monitoring parameters of a digital twin can
be used to be a health indicator and update the health status
of the machine rapidly. Yu et al. proposed a digital twin-
based method to evaluate the health state of an electro-
optical system with an optical transfer function as the indi-
cator [52]. Peng et al. concluded specific health indicators
in different levels of power converters and applied particle
swarm optimisation to estimate the circuit parameters based
on the incoming data from both the digital twin and the
physical prototype [42]. Compared with the traditional
data-driven method, the DT model estimation results are
more accurate, and it can update and self-learn in real time,
demonstrating that the digital twin methodology has good
performance and broad applicability in health monitoring.

(d) RUL prediction

The amount of papers related to RUL prediction based
on DT dominates the literature database. On the one hand,
the remaining life of key components has a significant
impact on the safety of the whole machine and the mainte-
nance schedule. On the other hand, it can acquire real-
time load of components and calculate the accumulative
damage based on digital twin. Upon getting the load, the
RUL can be obtained by using a damage estimation model
of the specific failure mode, such as accumulated wear of a
braking system [30], fatigue crack length of aircraft wings
[46], thermal mechanic fatigue of turbine blisks [73], and
creep damage of turbine blades [72]. These methods are
based on reduced order modelling to build a quick mapping
model from performance monitoring parameters to thermal
or structural loads of key components. DT provides the
potential for predicting the RUL of these critical parts, of
which life is always affected by loads and temperatures.
However, collection of data such as geometric, material,
and historical failure data has made algorithm development
and validation complex.

4.4. Challenges and Future Directions. Though effects have
been made for improving condition monitoring through digi-
tal twin technologies, some barriers and restrictions still exist.
Simultaneously, the application of digital twins on condition
monitoring in this paper proves that there are many chances
and new directions for further research in this field. Hence, the
challenges and future directions were discussed in this section.
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4.4.1. Current Challenges

(1) Data Collection and Management. Multisource, multi-
modal, multitemporal scale data (e.g., geometry, material,
monitoring data, environments, usage, and maintenance
records) will be involved in building a digital twin, which
can accurately reflect the operating condition. They cover
the whole life cycle of a machine, including designing,
manufacturing, operation, and maintenance phases. Col-
lecting the above data with high quality and completeness is
an essential but difficult challenge. After data collection, man-
aging these data into a complete and standard order, which
supports condition monitoring, is one more critical issue.

The amount of data generated by a cluster of individual
digital twins is far too large to be stored on standard storage
devices. Meanwhile, these data should be easily accessible
online to conduct remote real-time condition monitoring
without delay. Wang et al. proposed the big data-driven con-
trol mechanism and IoT-cloud technologies to build CPS-
Digital-twin for the multi-life-cycle remanufacturing process
[74]. Although cyber-physical systems and the IoTs are fast
evolving, implementing online storage and access will be
costly and time-consuming.

(2) Modelling and Method Development. Digital twin model-
ling for machines needs a good trade-off between fidelity and
efficiency, with the consideration of the requirements for
rapid response and the available computational resources.
Physical-based modelling is a time-consuming computing
process. The data-driven methods are efficient but lack inter-
pretability and transparency. Though the integration of both
methods is a solution for DT-driven CM, the error and
uncertainty that occurred in the model-coupling process is
a derived problem that is being explored in academia.

DT-driven CM is currently in its early stages. How to
develop new methods based on the new variables generated
by the digital twin for monitoring new states still needs in-
depth research and innovation.

(3) Validation of Accuracy of Behavior Characterisation. The
operation condition of a large system is dynamically changing.
Time and operational environments affect the performance
degradation and part damage. Incorporating these changing
characteristics of a physical entity into the updating process
of the virtual model is a challenge. Then, the accuracy of the
updated digital twin remains to be verified after each replace-
ment. However, few digital twins can enable real-time updates
based on input data. Hence, condition monitoring cannot rely
entirely on this kind of digital twins.

4.4.2. Future Directions

(1) Multicomponent, Multilevel Model Development in DT-
Driven CM. Most research objects of DT are single-component
models in the reviewed papers. It may be a part of multicompo-
nent, multilevel machinery in the industry. Single-component
DT is hard to satisfy the needs of performance evaluation and

fault isolation for the complex system. In addition, each system
element might be simulated and modelled by different software
due to adaptability. Coupling all elements into an integrated sys-
tem is one concerning part that needs to be designed and orga-
nised effectively. The integrated system should ensure that
existing submodels can be reused, replaced, or modified without
corrupting the entire system simulation. Therefore, this is
deemed a promising direction for DT-driven CM research.

(2) Framework Standardisation for DT-Driven CM. The con-
cept and connotation of digital twins have been fully devel-
oped in the decade since DT was proposed. However, the
implementation of DT-driven CM comes into many forms.
No standardisation is slowing the progress of in-depth
development and leading readers unable to find appropriate
solutions for machines. An effective way is to propose the
standard DT framework for condition monitoring, including
system architecture, workflow, modelling methods, and eval-
uation indices.

(3) Uncertainty Quantification for DT-Driven CM. Numer-
ous sources of uncertainty cause decision-makers to have
reservations about the accuracy and reliability of monitoring
performance. The three major sources include input data
uncertainty, such as geometry, operating conditions, and the
uncertainty of model forms, which are only an approximation
to a real condition and are limited by computational budgets,
as well as numerical uncertainty induced by iterative error,dis-
cretization error. To effectively manage uncertainties, uncer-
tain quantification should be incorporated into DT-driven
CM, containing uncertainty identification, propagation, anal-
ysis, and optimisation stages.

5. Conclusion

The development of DT creates new opportunities and
difficulties for CM. This review focuses on solving two ques-
tions, why and how DT is utilised to drive CM. We conducted
a systematic literature review on 95 papers collected from
common electronic databases to provide an overview of DT-
driven CM. We analysed the studies regarding the causes,
methods, and applications that corresponded with the notion
of DT-driven CM. Through in-depth analysis, conclusions can
be drawn that the reasons include:

(i) Many new monitorable variables provided by DT
extend the monitoring scope.

(ii) DT’s real-time response and behavior characterisa-
tion enhance the monitoring ability.

(iii) Predictive maintenance based on DT provides novel
monitoring paradigms.

The details of the modelling methods of DT towards CM
(e.g., physical-based, data-driven, and hybrid methods) and
the novel monitoring paradigms (performance evaluation,
anomaly detection, health monitoring, RUL prediction,
etc.) were discussed to provide insights for building DT-
driven CM. This work investigates more the support
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supplied by DT for CM and details less how CM is really
applied based on DT, as influenced by the gathered litera-
ture. In the future, more emphasis should be placed on the
superiority and usability of digital twin-driven condition
monitoring over traditional condition monitoring.

Overall, various frameworks and methodologies for DT-
driven CM have been presented, but only a few have gained
industry consensus. The majority of present research focused
on individual component modelling and one-way physical to
digital communication, which has not yet proven to be a pow-
erful driver of condition monitoring from a technical engi-
neering view. Meanwhile, there is no unifying standard for
DT-driven CM, making the research more dispersed and dif-
ficult to refer to by other scholars, which may cause repeated
research. It is critical that researchers work together to create
a systematic framework for DT and DT-driven CM further.
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